73 research outputs found

    Apolipoprotein E4 and Insulin Resistance Interact to Impair Cognition and Alter the Epigenome and Metabolome

    Get PDF
    Apolipoprotein E4 (E4) and type 2 diabetes are major risk factors for cognitive decline and late onset Alzheimer’s disease (AD). E4-associated phenotypes and insulin resistance (IR) share several features and appear to interact in driving cognitive dysfunction. However, shared mechanisms that could explain their overlapping pathophysiology have yet to be found. We hypothesized that, compared to E3 mice, E4 mice would be more susceptible to the harmful cognitive effects of high fat diet (HFD)-induced IR due to apoE isoform-specific differences in brain metabolism. While both E3 and E4 mice fed HFD displayed impairments in peripheral metabolism and cognition, deficits in hippocampal-dependent spatial learning and memory were exaggerated in E4 mice. Combining genome-wide measures of DNA hydroxymethylation with comprehensive untargeted metabolomics, we identified novel alterations in purine metabolism, glutamate metabolism, and the pentose phosphate pathway. Finally, in E4 mice, the metabolic and cognitive deficiencies caused by HFD were rescued by switching to a low fat diet for one month, suggesting a functional role was associated with reversal of the same metabolic pathways described above. These results suggest a susceptibility of E4 carriers to metabolic impairments brought on by IR, and may guide development of novel therapies for cognitive decline and dementia

    Bi-directional and shared epigenomic signatures following proton and 56Fe irradiation.

    Get PDF
    The brain's response to radiation exposure is an important concern for patients undergoing cancer therapy and astronauts on long missions in deep space. We assessed whether this response is specific and prolonged and is linked to epigenetic mechanisms. We focused on the response of the hippocampus at early (2-weeks) and late (20-week) time points following whole body proton irradiation. We examined two forms of DNA methylation, cytosine methylation (5mC) and hydroxymethylation (5hmC). Impairments in object recognition, spatial memory retention, and network stability following proton irradiation were observed at the two-week time point and correlated with altered gene expression and 5hmC profiles that mapped to specific gene ontology pathways. Significant overlap was observed between DNA methylation changes at the 2 and 20-week time points demonstrating specificity and retention of changes in response to radiation. Moreover, a novel class of DNA methylation change was observed following an environmental challenge (i.e. space irradiation), characterized by both increased and decreased 5hmC levels along the entire gene body. These changes were mapped to genes encoding neuronal functions including postsynaptic gene ontology categories. Thus, the brain's response to proton irradiation is both specific and prolonged and involves novel remodeling of non-random regions of the epigenome

    Postsynaptic density radiation signature following space irradiation

    Get PDF
    Introduction: The response of the brain to space radiation is an important concern for astronauts during space missions. Therefore, we assessed the response of the brain to 28Si ion irradiation (600 MeV/n), a heavy ion present in the space environment, on cognitive performance and whether the response is associated with altered DNA methylation in the hippocampus, a brain area important for cognitive performance.Methods: We determined the effects of 28Si ion irradiation on object recognition, 6-month-old mice irradiated with 28Si ions (600 MeV/n, 0.3, 0.6, and 0.9 Gy) and cognitively tested two weeks later. In addition, we determined if those effects were associated with alterations in hippocampal networks and/or hippocampal DNA methylation.Results: At 0.3 Gy, but not at 0.6 Gy or 0.9 Gy, 28Si ion irradiation impaired cognition that correlated with altered gene expression and 5 hmC profiles that mapped to specific gene ontology pathways. Comparing hippocampal DNA hydroxymethylation following proton, 56Fe ion, and 28Si ion irradiation revealed a general space radiation synaptic signature with 45 genes that are associated with profound phenotypes. The most significant categories were glutamatergic synapse and postsynaptic density.Discussion: The brain’s response to space irradiation involves novel excitatory synapse and postsynaptic remodeling

    Targeted deletion of miR-132/-212 impairs memory and alters the hippocampal transcriptome

    Get PDF
    miR-132 and miR-212 are structurally related microRNAs that have been found to exert powerful modulatory effects within the central nervous system (CNS). Notably, these microRNAs are tandomly processed from the same noncoding transcript, and share a common seed sequence: thus it has been difficult to assess the distinct contribution of each microRNA to gene expression within the CNS. Here, we employed a combination of conditional knockout and transgenic mouse models to examine the contribution of the miR-132/-212 gene locus to learning and memory, and then to assess the distinct effects that each microRNA has on hippocampal gene expression. Using a conditional deletion approach, we show that miR-132/-212 double-knockout mice exhibit significant cognitive deficits in spatial memory, recognition memory, and in tests of novel object recognition. Next, we utilized transgenic miR-132 and miR-212 overexpression mouse lines and the miR-132/-212 double-knockout line to explore the distinct effects of these two miRNAs on the transcriptional profile of the hippocampus. Illumina sequencing revealed that miR-132/-212 deletion increased the expression of 1138 genes; Venn analysis showed that 96 of these genes were also downregulated in mice overexpressing miR-132. Of the 58 genes that were decreased in animals overexpressing miR-212, only four of them were also increased in the knockout line. Functional gene ontology analysis of downregulated genes revealed significant enrichment of genes related to synaptic transmission, neuronal proliferation, and morphogenesis, processes known for their roles in learning, and memory formation. These data, coupled with previous studies, firmly establish a role for the miR-132/-212 gene locus as a key regulator of cognitive capacity. Further, although miR-132 and miR-212 share a seed sequence, these data indicate that these miRNAs do not exhibit strongly overlapping mRNA targeting profiles, thus indicating that these two genes may function in a complex, nonredundant manner to shape the transcriptional profile of the CNS. The dysregulation of miR-132/-212 expression could contribute to signaling mechanisms that are involved in an array of cognitive disorders

    Hardware-programmable Optical Networks

    Get PDF
    Significantly regulated Kegg pathway data for the decreased RNA transcription condition for the 0.1 Gy dose are illustrated for oxidative phosphorylation. Key molecules identified included NADH dehydrogenase, Cytochrome c oxidase, and F-type ATPase. (TIFF 9302 kb
    • …
    corecore